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Abstract

Primality testing is the problem of deciding whether a given number n is

prime. Efficient primality tests are needed for generating keys used in many

modern cryptographic systems. Until recently, no such algorithm was known

that was general, deterministic, unconditional, and polynomial time. With the

publication of PRIMES is in P in 2002, computer scientists Agrawal, Kayal,

and Saxena showed that an algorithm with all four properties does indeed

exist. In this paper we present a background of primality testing, as well as

an exposition of the AKS algorithm and its proof of correctness.
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1 Introduction

We say an integer n ≥ 2 is prime if its only positive divisors are 1 and itself.

Euclid, in his book Elements (circa 300 BC) was the first to record such a

definition, albeit with slightly more cryptic wording:

A prime number is that which is measured by a unit alone.

Euclid also proved that there are infinitely many primes. Another Greek

mathematician, Eratosthenes, proposed an early method for finding them.

His technique, called the Sieve of Eratosthenes, was to first form a list of all

the integers from 2 up to a certain n.

2, 3, 4, 5, 6, 7, 8, 9, 10, 11 . . . , n

One could then proceed by finding the smallest number in the list (2 to begin

with) and crossing out all of its multiples (4, 6, 8, etc.).

2, 3, �4, 5, �6, 7, �8, 9, ��10, 11 . . . , n

The process is repeated with the next uncrossed number in the list, 3.

2, 3, �4, 5, �6, 7, �8, �9, ��10, 11 . . . , n

The numbers that remain uncrossed at the end are the primes.

Many of the further advances in the subject are owed to the groundwork in

number theory done in the 17th and 18th centuries by mathematicians Fermat,
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Euler, and Mersenne. Numbers of the form 2n−1 are called Mersenne numbers

after the latter, and 50 of them are known to be primes as of the writing of

this paper. In fact, the largest known prime as discovered in December 2017

is a Mersenne prime: 277,232,917 − 1.

Unfortunately, Eratosthenes’ sieve method would take longer than the age

of the sun to verify the above number. Though it is simple and easy to carry

out by hand, it is only useful for relatively small inputs. Due to its time and

space requirements, it becomes wildly inefficient as the numbers grow. Indeed,

before the advent of computers, no one was trying to find large primes anyway.

Regardless of impracticality, there simply wasn’t a reason to.

It would later turn out that in addition to their great importance to num-

ber theory and other areas of mathematics, prime numbers have practical

applications as well. Many cryptographic systems that we use daily to keep

information secure on the internet require large prime numbers to operate.

Thus with modern cryptography came the need for efficient primality tests.

Many algorithms have been proposed, but almost all of them fail to have at

least one of the following desired characteristics:

General. An algorithm that is general works for all numbers. Algorithms

that are not general only work on numbers of a certain form, such as the

Lucas-Lehmer test for Mersenne numbers.

Deterministic. A deterministic algorithm gives a definitive result every

time it is run. The opposite of deterministic is probabilistic, which gives an

answer with some probability of being correct. For example, the Miller-Rabin

test can correctly identify a number as composite over 75% of the time. Such

tests rely on multiple runs to gain a greater certainty of the result.

Unconditional. An unconditional algorithm is one whose correctness does

not depend on any unproven hypotheses. For example, there are conditional

primality tests that are correct only if the Extended Riemann Hypothesis is

true.
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Polynomial Time. A polynomial time algorithm is one with computa-

tional complexity that is a polynomial function of the input size. For primality

testing, we measure the input size as the number of bits needed to represent

the number. Therefore a polynomial time algorithm will have complexity that

is a polynomial function of log2 n.

In computer science, a distinction is made between problems that can be

solved in polynomial time in a deterministic way and those that cannot. The

former is referred to as class P complexity. For quite some time, it was un-

known whether or not the problem of determining a number to be prime was

in P. Finally, in 2002 it was shown by Indian computer scientists Agrawal,

Kayal, and Saxena that an algorithm fulfilling all four properties is in fact

possible.

Their algorithm, AKS, is the focus of Chapter 6. We preclude its presen-

tation with a few examples of primality tests that satisfy some, but not all

of the above properties, including both deterministic and probabalistic ap-

proaches. We provide the lower level number theory algorithms that allow

these tests to function. Finally, we conclude with a discussion of the theo-

retical implications versus the practical usage of these tests. All algorithms

mentioned in this paper been implemented in Python, with code made avail-

able at https://github.com/worthirj/primality-testing.
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2 Preliminaries

We assume a knowledge of basic number theory and abstract algebra. The

following sections cover a brief review of these topics and introduce some of

the notation used throughout the paper.

2.1 Review of Number Theory

Important definitions and results in number theory are listed here for reference.

Proofs are not given, see for example An Introduction to Higher Mathematics

by Patrick Keef and David Guichard.

Definition 2.1. An integer p > 1 is prime if it has only two positive divi-

sors, 1 and itself. An integer a > 1 with more than two positive divisors is

composite.

Definition 2.2. Let a and b be integers. The greatest common divisor

of a and b, denoted gcd(a, b), is the largest positive integer n for which n | a
and n | b.

Theorem 2.3. Let a and b be nonzero integers. Then there exist integers x

and y such that gcd(a, b) = ax+ by.

Definition 2.4. Two integers a and b are relatively prime if and only if

gcd(a, b) = 1.

Definition 2.5. Let a, b, and n be integers. Then a is congruent to b

modulo n if and only if n | a− b. We denote this as a ≡ b (mod n).
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Definition 2.6. Let a and n be integers. The multiplicative inverse of a

modulo n is an integer b such that ab ≡ 1 (mod n).

Theorem 2.7. An integer a has a multiplicative inverse modulo n if and

only if a and n are relatively prime. The set Un ⊆ Zn denotes the set of

elements in Zn that are relatively prime to n, i.e. have multiplicative inverses.

Definition 2.8. Given r ∈ N and an integer n with gcd(n, r) = 1, we define

the order of n modulo r as the smallest number k such that nk ≡ 1 (mod r),

and denote it as ordr(n).

Note that as a consequence of Theorem 2.7, ordr(n) is defined if and only if

gcd(n, r) = 1. As an example of what can happen if n and r are not relatively

prime, take n = 4 and r = 6. Listing out the powers of 4 (mod 6), we have

k 4k (mod 6)

1 4

2 4

3 4

4 4

5 4

6 4

No value of k > 0 can cause 4k ≡ 1 (mod 6) so 4 does not have an order

modulo 6.

Theorem 2.9 (Fundamental Theorem of Arithmetic). Every integer

n > 1 is either a prime number or can be factored into the product of prime

numbers. Such factorizations are unique.

We typically use the notation n = p1
e1p2

e2 · · · pkek to denote the prime fac-

torization of n, where p1, p2, . . . , pk are distinct primes and the exponents

e1, e2, . . . , ek are greater than 0.
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Definition 2.10. Let n > 1 be an integer. Euler’s Phi Function, denoted

φ(n), is the number of integers less than n and greater than or equal to 0 that

are relatively prime to n. Note that |Un| = φ(n). Letting n = pe11 p
e2
2 · · · p

ek
k be

the prime factorization of n, this quantity is given by the formula

φ(n) = n
k∏
i=1

(
1− 1

pi

)
.

For example, φ(9) = 6 since 1, 2, 4, 5, 7, and 8 are all relatively prime to 9.

Not included are 3 and 6 since they share the common factor of 3.

Note that if p is a prime, φ(p) = p − 1 since all integers less than p are

relatively prime to p.

Theorem 2.11 (Euler’s Theorem). If n and a are positive integers and

gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

Theorem 2.12 (Fermat’s Little Theorem). Let a be an integer and p be

a prime. Then

a) ap−1 ≡ 1 (mod p) if a and p are relatively prime,

b) ap ≡ a (mod p) for all a.

2.2 Review of Abstract Algebra

We assume a knowledge of the basic definitions of groups, rings, fields and their

properties. Results that will be referenced later are cited here. We also develop

a bit of theory about polynomials that will be used to prove the correctness of

the AKS algorithm. For a more complete treatment, see any standard algebra

textbook.
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Theorem 2.13 (Binomial Theorem). Let R be a commutative ring with

identity, n an integer, and a, b ∈ R. Then

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k.

Theorem 2.14 (The Freshman’s Dream). Let R be a commutative ring

of prime characteristic p. Let a, b ∈ R. Then

(a+ b)p = ap + bp.

Proof. By the binomial theorem, we have

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k.

Since
(
p
k

)
= p!

k!(p−k)! , we see that p divides the numerator but not the denomi-

nator for 1 ≤ k ≤ p− 1 because p is a prime and k, p− k are both less than p.

Hence the coefficients on all the terms are congruent to 0 modulo p except the

first and last, which are congruent to 1, giving us (a+ b)p ≡ ap + bp (mod p).

Therefore (a+ b)p = ap + bp in R.

2.2.1 Polynomial Rings

The idea of polynomials from calculus can be abstracted to any ring.

Theorem 2.15. Let R be a ring and let R[X] denote the set of all sequences

of elements in R (a0, a1, . . . ) such that ai = 0 for all but a finite number of

indices i. Then R[X] is a ring with addition and multiplication defined by

(a0, a1, . . . ) + (b0, b1, . . . ) = (a0 + b0, a1 + b1, . . . )

(a0, a1, . . . ) · (b0, b1, . . . ) = (c0, c1, . . . ),
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where cn =
n∑
i=0

an−ibi. If R is commutative then so is R[X].

For convenience, we write (a0, a1, . . . , ad) for the sequence (a0, a1, . . . ) if ad 6=
0 and ai = 0 for all i > d. That is, the sequences (0, 2, 5, 0, 0, . . . ) and (0, 2, 5)

denote the same polynomial.

We already have some intuition about R[X] from calculus. We can assign

the formal symbol X as a placeholder to write the elements of R[X] as we are

used to seeing them. That is,

(a0, a1, a2, a3, . . . , ad) = adX
d + · · ·+ a3X

3 + a2X
2 + a1X + a0.

If ai = 0, the convention is to omit the X i term. For example, we write

(1, 2, 0, 3, 0, 4) = 4X5 + 3X3 + 2X + 1.

As in calculus, the highest power of X that appears in f is the degree of

the polynomial and is denoted deg(f). For a polynomial f 6= 0 with degree d,

we call ad the leading coefficient of f . A polynomial f 6= 0 is monic if the

leading coefficient is 1. For example, f(X) = X5 + 2X4 + 3X2 + 7X + 2 is

monic and has degree 5.

Example. Z[X] is the ring of polynomials with integer coefficients. Zn[X]

is the ring of polynomials with integers in Zn (operations on coefficients are

carried out modulo n).

As Theorem 2.15 suggests, we can think of addition and multiplication of two

polynomials as a series of operations on their coefficients. When doing these

operations on a computer, it is straightforward to represent a polynomial as

an array of its coefficients. We can also develop a concept of division and

modular arithmetic for polynomials analogous to the integers.

Theorem 2.16. Let R be a ring with identity, and let f, g ∈ R[X] be nonzero

polynomials such that the leading coefficient of g is a unit in R. Then there
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exist unique polynomials q, r ∈ R[X] such that

f = qg + r with deg(r) < deg(g).

Definition 2.17. For f, h ∈ R[X], we say that h divides f if f = h · q for

some q ∈ R[X]. If 0 < deg(h) < deg(f), then h is called a proper divisor of

f .

Definition 2.18. Let h ∈ R[X] be a polynomial whose leading coefficient is

a unit. For f, g ∈ R[X] we say that f and g are congruent modulo h, and

write f ≡ g (mod h), if f − g is divisible by h.

Example. We can visualize division with remainder through polynomial

long division, a process essentially the same as that done in elementary school

with integers. For example:

6X − 2

X2 − 1
)

6X3 − 2X2 +X + 3

− 6X3 + 6X

− 2X2 + 7X + 3

2X2 − 2

7X + 1

We get that (6X3− 2X2 +X + 3) / (X2− 1) = (6X − 2)(X2− 1) + (7X + 1),

and write

(6X3 − 2X2 +X + 3) ≡ (7X + 1) (mod X2 − 1).

2.2.2 Quotient Rings of Polynomials

We are now ready to develop the notion of quotient rings of polynomials which

is a central component of the AKS algorithm. As with the integers taken
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modulo some m, we can take the elements of R[X] modulo some polynomial

h and form a ring from the remainders.

Theorem 2.19. Let R be a ring with identity and h ∈ R[X] be a nonzero

polynomial with unit leading coefficient. Let d = deg(h). Define R[X]/h(X)

as the set of all polynomials in R[X] with degree strictly less than d, with the

operations + and · taking place modulo h(X). Then R[X]/h(X) is also a ring

with identity.

The elements of R[X]/h(X) can be thought of as the elements in R[X]

modulo h(X). Let f, g ∈ R[X]. Then if f ≡ g (mod h(X)), we say f = g in

the ring R[X]/h(X) (under the map f 7→ f (mod h(X))). If R = Zn, then

two polynomials are equal in Zn[X]/h(X) if they are equivalent modulo h(X),

n.

Example. Consider R = Z5[X]/(X2−1), the ring of polynomials with coef-

ficients in Z5 modulo X2−1. Any element of Z[X] can be naturally mapped to

R by the mapping f 7→ f (mod X2−1, 5). For example, X3+5X2+2X+1 7→
3X + 1.

We now turn our attention to polynomials over fields, beginning with a

definition.

Definition 2.20. Let F be a field, and let F ∗ denote F − {0}. A nonzero

polynomial f ∈ F [X] is irreducible if it does not have a proper divisor. That

is, if f = g · h for some g, h ∈ F [X] it follows that g ∈ F ∗ or deg(g) = deg(f).

Theorem 2.21 (Unique Factorization for Polynomials). Let F be a

field. Then every nonzero polynomial f ∈ F [X] can be written as a product

of a · h1 · · ·hs, s ≥ 0, where a ∈ F ∗ and h1, . . . , hs are monic irreducible

polynomials in F [X] of degree greater than 0. This product representation is

unique up to the order of the factors.

Theorem 2.22. Let F be a field, and let h ∈ F [X] be a monic irreducible

polynomial over F . Then F [X]/h(X) is also a field.
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Finally, we can also extend the concept of roots of polynomials to fields.

Definition 2.23. Let F be a field, and let f ∈ F [X]. An element a is a

root, or zero of f if f(a) = 0, where f(a) means to substitute a for X in the

expression for f(X).

Theorem 2.24. A polynomial of degree n over a field has at most n zeros.

To establish an important property of the roots, we recall another familiar

calculus concept, the derivative.

Definition 2.25. Let f(X) = anX
n + an−1X

n−1 + · · · + a1X + a0 be an

element of F [X]. The derivative of f(X), denoted f ′(X), is the polynomial

nanX
n−1 + (n− 1)an−1X

n−2 + · · ·+ a1 in F [X].

Theorem 2.26. A polynomial f(X) over a field F has a repeated root if

and only if f(X) and f ′(X) have a common factor of degree ≥ 1 in F [X].

Theorem 2.27. Let F be a field and let h(X) be irreducible in F [X] with

root a. Then the extension field F (a) = {x + ya | x, y ∈ F} is isomorphic to

F [X]/h(x) under the mapping ψ : a 7→ X.

2.2.3 Cyclotomic Polynomials

The following definitions illustrate a specific type of polynomial that will be

used in the AKS proof of correctness. For a more in-depth examination, see

[6] or [9].

Definition 2.28. Let n be a positive integer. An nth root of unity is a

number z satisfying the equation zn = 1. An nth root of unity is primitive

if it is not a kth root of unity for some k < n, that is, zk 6= 1 for all k =

1, 2, . . . , n− 1.

Definition 2.29. For any positive integer n, let ω1, ω2, . . . , ωφ(n) denote the

primitive nth roots of unity. The nth cyclotomic polynomial in C[X] is the

polynomial Φn(X) = (X − ω1)(X − ω2) · · · (X − ωφ(n)).
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Note that the roots of Φn(X) are precisely the φ(n) primitive nth roots of

unity, making it monic with degree φ(n).

Theorem 2.30. Φn(X) has integer coefficients and is a divisor of Xn − 1.

We also require the following result about cyclotomic polynomials over finite

fields (see [9]).

Theorem 2.31. Let Φr(X) be the rth cyclotomic polynomial over the finite

field Fp. Then Φr(X) divides Xr − 1 and factors into irreducible factors of

degree ordr(p).

12



3 Algorithms in Number Theory

With the mathematical foundations in place, we turn to the computational side

of things. Much of our further work in primality testing and its cryptographic

applications requires making frequent computations of the greatest common

divisor, multiplicative inverses, and powers of integers modulo n. We present

the algorithms here that we will be using to compute these quantities. First,

we give a definition of computational complexity.

Definition 3.1 (Big-O Notation). Let f(n) and g(n) be functions of n

taking on positive values. We say f is Big-O of g and write

f(n) ∈ O(g(n))

if there are positive constants c and C such that

f(n) ≤ cg(n) for all n ≥ C.

Big-O notation can give us an idea for how quickly the time and space

required for a given algorithm grow with the input size n.

This paper deals only with algorithms that take integer inputs. Since we are

running them on computers, we measure the input size as the number of bits

needed to represent the integer in binary.

Notation

For an integer n ≥ 1, let ||n|| = blog2(n)c + 1 be the number of bits in the

binary representation of n. Define ||0|| = 1.
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Since cryptographic applications require we deal with very large integers

(hundreds of digits), we require algorithms that are at least polynomial time

or better in the size of the input: O(||n||a)) = O((log2 n)a) for some a. This

means that the complexity we seek is a polynomial function of log2 n. In the

following sections we will build up a bank of algorithms that will allow us to

efficiently compute quantities on very large inputs.

We will also occasionally use the following rather technical notation.

Definition 3.2 (Soft-O Notation). Let f(n) and g(n) be functions of n

taking on positive values. We say f is Soft-O of g and write

f(n) ∈ O∼(g(n))

if there exists k such that

f(n) ∈ O(g(n) · logk g(n)).

This allows us to simplify Big-O notation by ignoring logarithmic factors,

which do not contribute to the overall worst case run-time as much as super-

logarithmic functions do. For example, the complexity

t(n) ∈ O((log n)(log log n)(log log log n))

can be simplified to t(n) ∈ O∼(log n).

To calculate the complexity of our algorithms, we use the following assump-

tions about basic math operations.

Cost of Basic Arithmetic

Let n and m be natural numbers. By [3] we can assume the following:

a) Adding or subtracting n and m takes O(||n||+ ||m||) = O(log n+ logm)

bit operations.

b) Multiplying n and m takes O(||n|| · ||m||) = O(log n · logm) operations.
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c) Computing the quotient and remainder of n modulo m takes

O((||n|| − ||m||+ 1) · ||m||) = O(log n · logm) bit operations.1

Therefore addition and subtraction are linear in the binary length of the

input numbers, and multiplication and division are no worse than quadratic.

3.1 GCD and Inverses

Given natural numbers a and b, what is their greatest common divisor? The

following algorithm recursively returns the answer.

Algorithm 3.1 The Euclidean Algorithm

Input: Positive integers a and b, with a ≥ b.

1: if b = 0 then
2: return a.
3: else
4: Set a = b, b = a mod b, go back to line 1.
5: end if

Recall that Theorem 2.3 states that we can write gcd(a, b) = ax + by for

some integers x and y. If gcd(a, b) = 1, then a has a multiplicative inverse

modulo b, namely x. If we keep track of these coefficients along the way, we

can extend the Euclidean Algorithm to efficiently calculate inverses as well.

Time Complexity

By [2], with a ≥ b the Euclidean Algorithm takes no more than 2 log2(b) + 2

iterations to compute gcd(a, b)2.

Adding in the cost of each operation, by [3] the Euclidean Algorithm and its

extended version are both O(||a|| · ||b||).
1The complexites in (b) and (c) assume the basic methods and can be improved to

O∼(B), where B = max{||n||, ||m||} using more advanced algorithms.
2In fact, it has been proven that the Euclidean Algorithm finishes in no more than

1.45 log2(b) + 1.68 iterations.
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3.2 Raising Integers to Powers

Another common operation is raising an integer to a power, modulo another

number. That is, computing ga (mod N).

Since the numbers are potentially very large, the naive approach of multi-

plying g by itself a times, then computing the remainder mod N is much too

slow, and the numbers get too big. Instead, we use a more clever method:

exponentiation by squaring.

We can compute the values g, g2, g4, g8, . . . by squaring and immediately

reducing modulo N to keep the numbers small. We then look at the binary ex-

pansion of the exponent a to determine which powers of g we need to multiply

together. For example, if a = 27 = 16 + 8 + 2 + 1, we multiply

g16 · g8 · g2 · g (mod N)

to obtain the final result. The algorithm is as follows.

Algorithm 3.2 The Fast Powering Algorithm

Input: Positive integers g, a, and N .

1: Let u = a and s = g mod N .
2: Let c = 1.
3: while u ≥ 1 do
4: if u is odd, then let c = (c · s) mod N .
5: Let s = s · s mod N .
6: Let u = bu/2c.
7: end while
8: return c

Time Complexity

By [2], the Fast Powering Algorithm takes at most 2 log2(a) multiplications

modulo N to compute ga. Therefore even for very large a, for example a ≈
21000, the computer only has to do around 2000 multiplications, an incredible

savings over the brute force approach.
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By [3], the algorithm has complexityO(||a||·||N ||2) using naive bit operations

and O∼(||a|| · ||N ||) using more advanced methods.

3.3 Testing For Perfect Powers

Consider the following definition:

Definition 3.3. An integer n is a perfect power if and only if there exist

a, b ∈ N with b > 1 such that n = ab.

Examples of perfect powers include 8 = 23 and 15625 = 56. At first glance,

checking whether an integer n is a perfect power seems to involve a lot of trial

and error exponentiation. However, we can do this in a remarkably efficient

way by performing a binary search for the base that makes raising to the b

power closest to n.

Algorithm 3.3 Perfect Power Test
Input: Integer n ≥ 2.

1: Let b = 2.
2: while 2b ≤ n do
3: Let a = 1, c = n.
4: while c− a ≥ 2 do
5: Let m = b(a+ c)/2c.
6: Let p = min{mb, n+ 1}. (Truncated fast powering)3

7: if p = n, return “Perfect Power” (p = mb)
8: if p < n then let a = m, else let c = m.
9: end while

10: Let b = b+ 1.
11: end while
12: return “Not a perfect power”

Time Complexity

By [3], the Perfect Power test is O(||n||4 log ||n||) for naive bit operations

and O∼(||n||3) for advanced methods.
3To compute mb, we use Algorithm 3.2, stopping immediately after we obtain a result

greater than n+ 1.
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4 Motivation

What is the point of being able to tell if a multi-hundred digit number is

prime? Certainly, it can be an interesting problem in and of itself. However, it

turns out such a tool is a necessity for supporting modern computer security

systems that we rely on daily.

4.1 Public Key Cryptography

Perhaps the most common practical use for prime numbers today is in public

key cryptography, which provides a framework for secure communication in

the presence of an adversary.

In general, a public key cryptosystem is one in which a user holds two quan-

tities: a public key used for encryption (known to everyone) and a private

key used for decryption (known only to them). The public key enables other

people to send encrypted information to the user, and the private key ensures

that only the recipient will be able to successfully decrypt and read the original

message.

Public key systems are based on mathematical problems that are hard to

solve on the surface, but become much easier when another piece of information

is known (i.e., the private key). It is important to note that by “hard”, we

mean “unable to be computed in any reasonable amount of time” (say, the

age of the sun) by modern computers. We will illustrate this concept with one

widely used system, RSA.
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4.2 The RSA Cryptosystem

RSA is a public key cryptosystem that was named after and first published

by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977. RSA is used to

protect a variety of communication done over the internet including through

web browsers and email.

Consider two people, Bob and Alice, who want to communicate securely.

The basic setup is as follows.

Bob: Choose two large primes, p and q. Keep these secret. Let N = pq, and

choose encryption exponent e such that gcd(e, (p − 1)(q − 1)) = 1. Publish

(N , e) as the public key.

Alice: Convert plaintext to integer m such that 1 ≤ m < p, q. Compute

c ≡ me (mod N) using Algorithm 3.2. Send ciphertext c to Bob.

Bob: Knowing p and q, solve the congruence ed ≡ 1 (mod (p− 1)(q− 1)) for

d using the Extended Euclidean Algorithm. Then compute cd (mod N) = m

to convert back to plaintext.

We will first prove that Bob’s decryption actually does yield the original

message m.

Proof. We want to show cd = med ≡ m (mod pq). Note that gcd(m, pq) = 1

and φ(pq) = (p − 1)(q − 1). Since ed ≡ 1 (mod (p − 1)(q − 1)), there is an

integer k such that ed = 1 + k(p− 1)(q − 1). We then have

med = m1+k(p−1)(q−1)

= m ·
(
m(p−1)(q−1))k

≡ m · 1k (mod pq) by Euler’s Theorem

= m.

The message m is recovered.
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Why is this setup secure? Suppose an adversary had access to the commu-

nication channel over which this information was being broadcasted. They

would then know the values N , e, and c, and face the challenge of solving the

congruence c ≡ me (mod N) for m. This task of taking eth roots modulo N ,

also called the RSA problem, is conjectured to be computationally hard. That

is, there is currently no algorithm to solve it in a reasonable amount of time

given sufficiently large numbers.

Another way an adversary could gain access would be to factor N to find

p and q. This would allow them to decrypt the message in exactly the same

way Bob does. However, factoring is also believed to be a “hard” problem.

There are a myriad of other number theoretic intricacies that would poten-

tially allow an adversary to gain more information that this paper will not

cover. At the most basic level, assuming large enough primes are used, Alice

and Bob can safely communicate without anyone else uncovering their mes-

sages because of the “one-way” nature of these mathematical problems.

As computing power has increased, so too has what is considered “large

enough” for the key N to be unfactorable. For example, from RSA’s con-

ception in 1977 through the 1980’s, 512 bits (or 155 decimal digits) was the

recommended key size. By the 90’s, numbers of this size had become too easy

for computers to factor, so the recommendation increased to 1024 bits. Cur-

rently as of 2018, the recommended size is 2048 bits, or 617 decimal digits.

Even these are likely to become breakable in the not-so-distant future. Not

surprisingly, larger keys have the side effect of making ordinary decryption

slower as well. Choice of key size is thus a trade-off between performance and

security.

It is also worth mentioning that the security of RSA has not been proven

theoretically; that is, we do not know for certain that no efficient algorithm

can possibly exist to solve the RSA or factoring problems. It has not even

been established that one must solve one of these problems to “crack” RSA,

as there may be some clever alternate way of decoding messages that has yet

to be discovered. The reason why we are confident in this system is simply
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the fact that many people over a span of almost 50 years have tried to break

it, and failed.

4.3 Prime Generation

In order for a system like RSA to run, one must first solve the Prime Gen-

eration Problem to generate the keys. An algorithm for this might look as

follows:

1. Choose a random odd integer of the desired length.

2. Check if prime. If not, go back to step 1.

With this in mind, it is helpful to know how likely it is that a randomly

chosen integer will be a prime. For this, we use the following famous theorem.

Theorem 4.1 (The Prime Number Theorem). Let N be an integer and

let π(N) equal the number of primes less than or equal to N . Then

lim
N→∞

π(N)

N/ ln(N)
= 1.

Therefore, the probability that a randomly chosen integer N is prime is

around 1/ ln(N).

If we wanted to make our RSA modulus N 2048 bits long, we would need

to find two primes p and q of length approximately 1024 bits. We can use the

prime number theorem to determine how many primes p are of this length,

that is, satisfy 21023 < p < 21024.

# of 1024 bit primes = π(21024)− π(21023) ≈ 21024

ln 21024
− 21023

ln 21023
≈ 21013.53

As can be seen, there are a lot to choose from.
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5 Primality Testing

It may come as a surprise that it is no trivial task to determine whether or

not a given number is prime. In this section, we examine why this is the case.

5.1 Brute Force

To begin to approach the idea of how we would create an efficient primality

test, we start with the most basic, brute force approach. Given an integer

input n ≥ 2, we could determine its primality as follows:

Algorithm 5.1 Brute Force Primality Test
Input: Integer n ≥ 2.

1: for a = 2 to b
√
nc:

2: if a divides n, return COMPOSITE.
3: return PRIME.

The brute force test is quite simple: run through every possible divisor of n.

If one of them divides n, we know n is composite, otherwise n is prime. Note

that we only need to check up to b
√
nc since we will start getting repeats if

we go higher.

We could improve this test by only checking the primes less than b
√
nc,

rather than every integer. However, this would require we carry around a

pre-made list, which is not feasible for extremely large values.

Why is this test inefficient? We see that in the worst case (when n is in fact

a prime), this test takes approximately
√
n computations. Doesn’t that make

it O(
√
n)?
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Recall that the number of bits needed to represent n is approximately log2 n.

Seen in this light, a string of log2 n 0’s and 1’s has caused the computer to do
√
n units of work. Rewriting the complexity in terms of the number of bits

||n||, we see that this test is actually O(2||n||/2), which grows exponentially.

In order to test a 2048 bit number this would require approximately 21024

computations, an astronomical amount of work.

5.2 Probabilistic Tests

Brute force trial division was an example of a deterministic test. In this

section we will see what it means to be a probabilistic test. Probabilistic

tests, in addition to the input n, take another random integer a with 1 ≤ a ≤
n− 1 and return one of two outcomes:

• Composite

• Inconclusive.

The integer a is called a witness to the compositeness of n. The idea behind

a probabilistic test is to test the number n with several values of a. If any of

the tests come back composite, we can stop and be sure that n is not prime. If

however, they all come back inconclusive, we can be more and more convinced

that n is in fact a prime.

A good probabilistic test will have a high likelihood (ideally 50% or better) of

returning composite if n is composite. One can see that after 50 ‘inconclusive’

results, the probability1 that n is actually composite is less than (1/2)50 = 2−50.

For most practical purposes, this gives us a very good chance of having a prime.

1This is an over-simplification, the actual probability can be calculated using conditional
probabilities and Bayes’ formula based on the distribution of the set of primes.
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5.2.1 Fermat Test

We now turn to the question of how to construct such a test. It turns out that

we already have a powerful tool to do so. Recall that Fermat’s Little Theorem

states that if an integer n is prime, then an ≡ a (mod n) for all a.

Since Fermat’s Little Theorem only works in one direction, the fact that

an ≡ a (mod n) for some a alone does not allow us to conclude that n is prime.

For example, 2341 ≡ 2 (mod 341) but 341 = 11 · 31. We can however take a

probabilistic approach and use the Fast Powering Algorithm (Algorithm 3.2)

to compute an (mod n) for several random a’s. If we get that an 6≡ a (mod n)

for some a, we can conclude that n is composite. Otherwise, we become more

and more sure that n is prime, stopping after some threshold k. The test looks

as follows.

Algorithm 5.2 Fermat Test
Input: Integer n ≥ 2.

1: for i = 1 to k:
2: Choose random a ∈ [2, n− 1].
3: if an 6≡ a (mod n), return COMPOSITE.
4: return PROBABLY PRIME.

Using Algorithm 3.2, each computation of an isO∼(||n||2), making the overall

complexity of the Fermat Test O∼(k · ||n||2), where k is the number of times

we run the test.

The Fermat Test is quite fast and easy to implement. The test does however

have a serious flaw: there exists a certain type of composite number that

completely fools it. Consider the composite number 561, which factors as

3 · 11 · 17. It can be shown that

a561 ≡ a (mod 561) for all a.

Though fairly sparse, it turns out that there are an infinite number of integers

with this property, which are called Carmichael numbers.
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If one were to run the Fermat Test on a Carmichael number c, the congruence

ac ≡ a (mod c) would always be satisfied, causing the test to wrongly proclaim

c as prime. We therefore need something a little stronger for our probabilistic

primality test.

5.2.2 Miller-Rabin Test

The Miller-Rabin Test improves on the weaknesses of the Fermat Test. Based

on theory formulated by Russian mathematician M. M. Artjuhov in 1966, Gary

Miller created a deterministic, polynomial time primality test that relied on the

unproven Extended Riemann Hypothesis in 1975. The test was later modified

by Michael Rabin to yield the probabilistic, but unconditional Miller-Rabin

test that we know today.

Their test is based on the following result:

Proposition 5.1. Let p be an odd prime and write

p− 1 = 2kq with q odd.

Let a be any number not divisible by p. Then one of the following conditions

is true:

i) aq ≡ 1 (mod p),

ii) One of aq, a2q, a4q, . . . , a2
k−1q is congruent to −1 (mod p).

Proof. By Fermat’s Little Theorem, ap−1 ≡ 1 (mod p). This tells us that

looking at the list of numbers

aq, a2q, a4q, . . . , a2
k−1q, a2

kq,

the last number in the list (which is equal to ap−1) is congruent to 1 modulo

p. Since each number in the list is a square of the previous number, one of the

following must occur:
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i) The first number in the list is congruent to 1 modulo p.

ii) Some number in the list is not congruent to 1 modulo p, but becomes

congruent to 1 when squared. The only number satisfying both

b 6≡ 1 (mod p) and b2 ≡ 1 (mod p)

is −1, so one of the numbers in the list is congruent to −1 (mod p).

This completes the proof.

This can be turned into a primality testing algorithm as follows.

Algorithm 5.3 Miller-Rabin Test
Input: Integer n ≥ 2.

1: Choose random potential witness a ∈ [2, n− 2].
2: if n is even or 1 < gcd(a, n) < n, return COMPOSITE.
3: Set a = aq (mod n).
4: if a ≡ 1 (mod n), return INCONCLUSIVE.
5: for i = 0 to k − 1:
6: if a ≡ −1 (mod n), return INCONCLUSIVE.
7: Set a = a2 (mod n).
8: return COMPOSITE.

The correctness of the algorithm can be seen from the contrapositive of

Proposition 5.1. Let n be an odd number and write n − 1 = 2kq with q odd.

Let a ∈ [2, n− 2] with gcd(a, n) = 1. If both

i) aq 6≡ 1 (mod n), and

ii) a2
iq 6≡ −1 (mod n) for all i = 0, 1, 2, . . . , k − 1,

then n is composite.

Time Complexity

As before, we use Algorithm 3.2 to compute aq. By [3], one iteration of the

Miller-Rabin test takes O∼(||n||2) time. Therefore if we were to test k different

witnesses a, the time complexity is O∼(k · ||n||2).
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It can be shown that for an odd composite number n, at least 75% of the

numbers a between 1 and n−1 are Miller-Rabin witnesses for n and will cause

the algorithm to return COMPOSITE. Importantly, there is also no analogue

to the Carmichael numbers of the Fermat Test. This means that after 50

‘INCONCLUSIVE’ runs of Miller-Rabin, the probability that n is actually

composite is only about (25%)50 ≈ 10−31.

Remark. The odds of getting a false prime after 50 rounds of Miller-Rabin

(∼ 10−31) are less than one millionth the odds of a cosmic ray flipping a bit to

produce the wrong result in a deterministic primality test (∼ 10−24). There-

fore, for all intents and purposes there is no reason to use a slower deterministic

test when generating primes to use in cryptosystems. The algorithms may be

deterministic, but the computers they run on are not!
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6 The AKS Primality Test

The primality testing algorithm presented by Manindra Agrawal, Neeraj Kayal,

and Nitin Saxena in their 2002 paper PRIMES is in P was the first to have all

four characteristics of general, deterministic, unconditional, and polynomial

time. Subsequently, improvements were made to the runtime and the pa-

per was re-published in 2004. This chapter will outline the general concepts,

walk through the updated algorithm step by step, and prove its correctness.

Drawing on the methods in Chapter 3, we will also demonstrate the time com-

plexity of the algorithm, and culminate with a discussion of its theoretical and

practical significance.

6.1 The Idea

The AKS test is based on a generalization of Fermat’s Little Theorem to

polynomials.

Lemma 6.1. Let n ≥ 2 be an integer, and a < n be an integer with

gcd(a, n) = 1. Then n is prime if and only if

(X + a)n ≡ Xn + a (mod n).

Note that a and n are real numbers in this expression but the letter X is

not. Rather, it is a formal symbol that is part of a polynomial as described

in Chapter 2. Equivalence is defined as having the same coefficients in the

polynomial ring Zn [X].
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Proof. From the Binomial Theorem, we have

(X + a)n =
n∑
i=0

(
n

i

)
an−iX i (6.1)

It follows that the coefficient of X i in (X + a)n is
(
n
i

)
an−i.

Suppose n is prime. Then for 0 < i < n,
(
n
i

)
= n!

i!(n−i)! ≡ 0 (mod n), since

n divides the numerator but does not divide the denominator (i and n− i are

both less than n). For i = 0, we get the term an since X0 = 1 and
(
n
0

)
= 1.

For i = n, we get the term Xn since an−n = 1 and
(
n
n

)
= 1. It follows that

(X + a)n ≡ an + 0 + 0 + · · ·+ 0 +Xn (mod n). By Fermat’s Little Theorem,

an ≡ a (mod n) so we are left with (X + a)n ≡ Xn + a (mod n), as desired.

Suppose n is composite. Consider a prime q that is a factor of n and let k

be the power of q in the prime factorization of n. Note that 1 < q < n, and

qk divides n but qk+1 does not.

Consider the coefficient of Xq in equation (6.1):(
n

q

)
· an−q =

n!

q!(n− q)!
· an−q =

n(n− 1) · · · (n− q + 1)

q!
· an−q

Looking at the right-hand side of this equation, note that qk divides n, but

all other factors in the numerator are relatively prime to q. It follows that the

numerator is divisible by qk but not qk+1. The factor of q in the denominator

cancels with one of the q’s in the numerator, leaving the entire fraction not

divisible by qk.

Since gcd(a, n) = 1, we have qk and an−q relatively prime. Since qk does not

divide either term in the coefficient
(
n
q

)
an−q, n certainly cannot either since

qk divides n. Hence, the coefficient of Xq is nonzero (mod n). Recall that

1 < q < n, therefore (X + a)n 6≡ Xn + a (mod n).

We will illustrate this result with a few examples.
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Example. Test whether 7 is prime.

Choose a = 1 for convenience.

Evaluate (x+ 1)7 (mod 7).

(x+ 1)7 = x7 + 7x6 + 21x5 + 35x4 + 35x3 + 21x2 + 7x+ 1

≡ x7 + 1 (mod 7)

The congruence in Lemma 6.1 is satisfied, therefore 7 is prime.

Example. Test whether 6 is prime.

Evaluate (x+ 1)6 (mod 6).

(x+ 1)6 = x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 1

≡ x6 + 3x4 + 2x3 + 3x2 + 1 (mod 6)

6≡ x6 + 1

The congruence in Lemma 6.1 is not satisfied, therefore 6 is composite.

Observe that the nonzero coefficients correspond to precisely the powers of x

that share prime factors with 6.

Note that Lemma 6.1 provides a test for primality on its own. However,

computing the coefficients on (X + a)n is exponential in the size of n, making

the test extremely slow for larger inputs. In fact, brute force trial division is

faster.

The main breakthrough of the AKS test comes in evaluating the polynomials

on both sides of the equation in Lemma 6.1 modulo another polynomial, Xr−1,

and checking several different a’s. That is, testing the congruence

(X + a)n ≡ Xn + a (mod Xr − 1, n).
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This lowers the degree of the polynomials and reduces the number of coeffi-

cients needing to be evaluated, thus improving the efficiency.

We will show in the correctness proof that the appropriate r is bounded

above and only requires us to check a’s up to a certain point to decide about

the primality of n, reducing the complexity of the algorithm into polynomial

time.

6.2 The Algorithm

Notation

We use log to denote the base 2 logarithm.

We use φ(n) to denote Euler’s Phi Function as defined previously.

In the correctness proof, we use Fp to refer to the finite field Z/pZ.

Algorithm 6.1 The AKS Primality Test
Input: Integer n ≥ 2.

1: if n = ab for a ∈ N and b > 1, return COMPOSITE.

2: Find the smallest r such that ordr(n) 6≤ log2 n.

3: if 1 < gcd(a, n) < n for some a ≤ r, return COMPOSITE.

4: if n ≤ r, return PRIME.

5: for a = 1 to b
√
φ(r) log nc :

6: if (X + a)n 6≡ Xn + a (mod Xr − 1, n), return COMPOSITE.

7: return PRIME.

Line 1 checks if n is a power of an integer where the exponent is greater

than 1. We can use the Perfect Power Test (Algorithm 3.3) to verify this.

Line 2 looks for the smallest value of r such that there is no k satisfying

the equation nk ≡ 1 (mod r) for some 1 ≤ k ≤ log2 n. We do this by trying

successive values of r starting at r = 2 and testing if nk 6≡ 1 (mod r) for every

1 ≤ k ≤ log2 n. If none of these are congruent to 1, we have found our r,

otherwise we increment r by 1 and try again.
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Note that there are two options here, either ordr(n) > log2 n or gcd(r, n) > 1.

The first case means that the smallest k satisfying nk ≡ 1 (mod r) is greater

than log2 n. The second case means nk ≡ 1 (mod r) does not have a solution

for any value of k.

Line 3 checks if n shares a common nontrivial factor with any number a ≤ r.

This step is necessary because we don’t yet know if ordr(n) is defined. We

compute the GCD using the Euclidean Algorithm (Algorithm 3.1).

Line 4 checks whether or not we have looked at the GCD of all numbers

less than n in the previous step. If we have, we will have found a nontrivial

factor if there was one in line 3 and returned COMPOSITE there.

Lines 5 and 6 verify a series of congruences for successive values of a. It

is clear that these congruences are satisfied mod n if and only if n is prime

from Lemma 6.1. Our subsequent analysis will focus on proving that they are

satisfied mod Xr + 1 as well, and that it suffices to check values of a up to

b
√
φ(r) log nc to determine the primality of n.

Line 7 returns PRIME if the algorithm still has not decided.

6.3 Proof of Correctness

The correctness of the algorithm depends on the following theorem.

Theorem 6.2 (Main Theorem). Given an input number n > 2, the algo-

rithm returns PRIME if and only if n is prime.

We will establish this result through a series of propositions. Proposition 6.3

gives the ‘←’ direction of the proof. We split the other direction into two cases.

The case of returning PRIME in line 4 is covered by Proposition 6.4. The rest

of the section is dedicated to proving the second case, returning PRIME in

line 7 (Proposition 6.5).

Proposition 6.3. If n is prime, the algorithm returns PRIME.
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Proof. Suppose n is prime. Clearly the statements in lines 1 and 3 can never

be true and thus will never return COMPOSITE. By Lemma 6.1, the for loop

in lines 5-6 will never return COMPOSITE either, since (X + a)n ≡ Xn + a

(mod n) for all a. Therefore the algorithm will return PRIME in either line 4

or line 7.

We will now prove the converse, that is, if the algorithm returns PRIME

then n is prime. There are two ways the algorithm can return PRIME: either

in line 4 or in line 7. We will consider the line 4 case first.

Proposition 6.4. If the algorithm returns PRIME in line 4, then n is prime.

Proof. Suppose the algorithm returns PRIME in line 4. Then n ≤ r, so we

have looked at gcd(a, n) for all 1 ≤ a ≤ n in line 3. Thus if n had been

composite we would have found a nontrivial factor in this step. Therefore n

must be prime.

For the rest of the section we will assume that the algorithm returns PRIME

in line 7.

Proposition 6.5. If the algorithm returns PRIME in line 7, then n is prime.

We have some more work to do before we are able to prove Proposition 6.5.

First, we will establish a bound on the number r found in line 3. We will use

the following result:

Lemma 6.6. Let LCM(m) denote the least common multiple of the first m

numbers. For m ≥ 7:

LCM(m) ≥ 2m .

For a proof, see [10].

Lemma 6.7. For all n ≥ 2, there exists an r ≤ max
{

3,
⌈
log5 n

⌉}
such that

either ordr(n) > log2 n or gcd(r, n) > 1, in which case ordr(n) is undefined.
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Proof. Suppose n = 2. Then r = 3 satisfies 3 ≤ max
{

3,
⌈
log5(2)

⌉}
. Further-

more, 22 ≡ 1 (mod 3) giving ord3(2) = 2, hence ord3(2) > log2(2) = 12 = 1.

With the trivial case established, assume n > 2. Let R = {r1, r2, . . . , rt} be

the set of numbers such that either ordri(n) ≤ log2 n or ri divides n. Then

each of these numbers must divide the product

Π := n ·
blog2 nc∏
i=1

(
ni − 1

)
.

Either ri divides n or nk ≡ 1 (mod ri) where k = ordri(n) ≤ log2 n, implying

that ri divides (nk − 1) in the i = k term.

Furthermore, observe that

n ·
blog2 nc∏
i=1

(
ni − 1

)
= n · (n− 1) · (n2 − 1) · · · (nblog2 nc − 1)

< n · n · n2 · n3 · · ·nblog2 nc

< nblog
2 nc · nblog2 nc · · ·nblog2 nc (blog2 nc times)

≤ nlog2 n · log2 n

= nlog4 n

=
(
2logn

)log4 n
= 2log5 n,

giving the product Π a strict upper bound of 2log5 n. Since dlog5 ne > 10 for

n > 2, Lemma 6.6 applies, giving us the inequality

LCM
(
dlog5 ne

)
≥ 2dlog

5 ne > Π.

Since LCM
(
dlog5 ne

)
is strictly greater than the product Π, there is some

number s ≤ dlog5 ne that divides LCM
(
dlog5 ne

)
but does not divide Π1. Since

1This is because if all s for which 1 ≤ s ≤ dlog5 ne divided Π, we would have Π ≥
LCM

(
dlog5 ne

)
which is not the case.
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every element of R divides Π, it follows that s /∈ R.

If gcd(s, n) = 1 then ords(n) is defined, and since s /∈ R, ords(n) > log2 n

and the first case is satisfied.

If gcd(s, n) > 1, then the second case is satisfied.

With this bound on r in mind, we proceed with the proof. We will also use

the following lemma.

Lemma 6.8. If ordr(n) > 1, then there exists a prime divisor p of n such

that ordr(p) > 1.

Proof. Suppose ordr(n) > 1. Let n =
t∏
i=1

peii be the prime factorization of n.

Suppose ordr(pi) = 1 for all 1 ≤ i ≤ t. Then pi ≡ 1 (mod r) for all i, so

n =
t∏
i=1

peii ≡
t∏
i=1

(1)ei ≡ 1 (mod r) and hence ordr(n) = 1, a contradiction.

Therefore there is a prime divisor pi of n such that ordr(pi) > 1 for some

1 ≤ i ≤ t.

In the case that n = 2, the algorithm will return PRIME in line 42. Suppose

n > 2. Since we have gotten all the way to line 7 in the algorithm, there are

a number of assertions we can make about n and r.

For one, we know that n > r and gcd(n, r) = 1 since the algorithm did not

return in lines 3 or 4.

It follows that ordr(n) is defined and greater than log2 n by the way r was

chosen in line 2. Since log2 n > 1 when n > 2, by Lemma 6.8 there exists a

prime divisor p of n such that ordr(p) > 1.

Furthermore, from getting to line 7 we can conclude that p > r since if p ≤ r,

either p < n and the algorithm would have returned COMPOSITE in line 3

or p = n and the algorithm would have returned PRIME in line 4.

It follows that p, n 6≡ 0 (mod r) and hence p, n ∈ Z∗r. The numbers p and r

will be fixed from this point forward. Our goal for the rest of the section is to

2The algorithm will choose r = 2 since log2(2) = 1 and 2k 6≡ 1 (mod 2) for every
1 ≤ k ≤ 1. Then n ≤ r, causing line 4 to return PRIME.
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show that p = n, in order to prove that n is prime.

Given what we know thus far, we will now analyze the polynomial congru-

ences. Let ` = b
√
φ(r) log nc. Note that the for loop in lines 5 and 6 checks

` equations. Since the algorithm does not return COMPOSITE in this step,

we have

(X + a)n ≡ Xn + a (mod Xr − 1, n)

for all a, 0 ≤ a ≤ `. Note that we have included a = 0 since the equation is

trivially satisfied in this case.

Since n divides ((X + a)n − (Xn + a)), we have that p also divides

((X + a)n − (Xn + a)) since p divides n. It follows that

(X + a)n ≡ Xn + a (mod Xr − 1, p)

for 0 ≤ a ≤ `.

We use the following language to describe this property.

Definition 6.9. Given a polynomial f(X) and number m ∈ N, we say that

m is introspective for f(X) if

[f(X)]m ≡ f(Xm) (mod Xr − 1, p),

where r and p are fixed numbers as before.

Under this definition, n and p are both introspective for X + a when 0 ≤
a ≤ `. We make the following claim.

Claim: n
p

is introspective for X + a when 0 ≤ a ≤ `.

Proof. Note that Zp[X] is a ring of characteristic p. By Theorem 2.14, we have

(f + g)p ≡ fp + gp (mod p). (6.2)
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In order to show n
p

is introspective for X + a, we must show that

(X + a)n/p − (Xn/p + a) ≡ 0 (mod Xr − 1, p).

Dividing the left-hand-side by Xr − 1 using polynomial long division, we

obtain

(X + a)n/p − (Xn/p + a) = (Xr − 1) ·Q(X) +R(X),

with polynomial quotient Q(X) and remainder R(X), which we will call Q

and R to simplify notation. We wish to show that R ≡ 0 (mod Xr − 1) in

order to prove that the left-hand-side is divisible by Xr − 1.

Raising both sides of the equation to the p power and simplifying using

equation 6.2, we then have

[
(X + a)n/p − (Xn/p + a)

]p ≡ [(Xr − 1) ·Q+R]p (mod p)

(X + a)n − (Xn/p + a)p ≡ (Xr − 1)p ·Qp +Rp (mod p)

(X + a)n − (Xn + a) ≡ (Xr − 1)p ·Qp +Rp (mod p)

Since (X + a)n ≡ Xn + a (mod Xr − 1, p) for all 0 ≤ a ≤ `, we have

(Xr−1)pQp+Rp ≡ 0 (mod Xr−1, p). Since Xr−1 clearly divides (Xr−1)p,

it must also divide Rp.

Furthermore, Xr − 1 can be broken into irreducible factors

Xr − 1 = (X − a1)(X − a2) · · · (X − ar).

Since the derivative (Xr − 1)′ = rXr−1 does not share any factors of degree

≥ 1 with Xr−1, each ai is distinct (Theorem 2.26). It follows that for each ai,

X − ai divides Xr − 1 and hence also divides Rp. Since X − ai is irreducible,

it follows that X − ai divides R for every 1 ≤ i ≤ r.

Therefore Xr − 1 divides R and hence R ≡ 0 (mod Xr − 1). We then have

(X + a)n/p − (Xn/p + a) ≡ 0 (mod Xr − 1, p) for all 0 ≤ a ≤ `, showing n
p

is

introspective for X + a when 0 ≤ a ≤ `.
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We will now prove some properties of introspective numbers and polynomials

in order to define two groups upon which the rest of the proof will be based. We

begin with the fact that introspective numbers are closed under multiplication.

Lemma 6.10. Let m and m′ be introspective numbers for polynomial f(X).

Then m ·m′ is also introspective for f(X).

Proof. Since m is introspective for f(X), we have

[f(X)]m·m
′ ≡ [f(Xm)]m

′
(mod Xr − 1, p).

Since m′ is also introspective for f(X), we can replace X by Xm in the intro-

spection identity to obtain

[f(Xm)]m
′ ≡ f(Xm·m′) (mod Xm·r − 1, p)

≡ f(Xm·m′) (mod Xr − 1, p) (since Xr − 1 divides Xm·r − 1).

Putting these equations together gives us

[f(X)]m·m
′ ≡ f(Xm·m′) (mod Xr − 1, p),

as desired.

The set of polynomials for which a number m is introspective is also closed

under multiplication.

Lemma 6.11. If m ∈ N is introspective for polynomials f(X) and g(X),

then m is also introspective for f(X) · g(X).
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Proof. Let h(X) = f(X) · g(X). We then have

[h(X)]m = [f(X) · g(X)]m

= [f(X)]m · [g(X)]m

≡ f(Xm) · g(Xm) (mod Xr − 1, p)

≡ h(Xm) (mod Xr − 1, p).

Therefore m is introspective for f(X) · g(X).

Since n
p

and p are both introspective for (X + a) when 0 ≤ a ≤ `, it follows

by Lemmas 6.10 and 6.11 that every number in the set I = {(n
p
)i ·pj | i, j ≥ 0}

is introspective for every polynomial in the set P = {
∏`

a=0(X +a)ea | ea ≥ 0}.
We are now ready to define the two groups.

For the first group, let Ir be the set of all residues of numbers in I modulo

r. That is,

Ir =

{(
n

p

)i
· pj (mod r)

∣∣ i, j ≥ 0

}
.

Observe that Ir is generated by n and p modulo r, and since gcd(n, r) =

gcd(p, r) = 1, Ir is a subgroup of Ur. Let |Ir| = t be the order of this group.

Recall that ordr(n) > log2 n, therefore t > log2 n. To illustrate this, pick for

instance the elements (
n

p

)0

· p0 = 1(
n

p

)1

· p1 = n(
n

p

)2

· p2 = n2

...(
n

p

)blog2 nc
· pblog2 nc = nblog

2 nc

39



and note that they are all distinct modulo r.

For the second group, we will require a bit of algebraic machinery. Let

Φr(X) be the rth cyclotomic polynomial over the finite field Fp. Note that

Φr(X) divides Xr − 1.

By [9], Φr(X) factors into irreducible factors of degree ordr(p). Let h(X) be

one of these irreducible factors. Recall that ordr(p) > 1, therefore the degree

of h(X) is greater than one.

Let F = Fp[X]/h(X) be the field of polynomials with coefficients in Fp
modulo h(x).

We define the second group G as the set of all residues of polynomials in P

modulo h(X) and p. That is,

G =

{∏̀
a=0

(X + a)ea (mod h(X), p)
∣∣ ea ≥ 0

}
.

Observe that G is generated by the elements X, X + 1, X + 2, . . . , X + `

and is a subgroup of the multiplicative group of F (G is clearly closed under

multiplication and contains 1).

We will now show that the size of G can be bounded. We will make use of

the following formula for the sum of binomial coefficients.

Lemma 6.12. Let m ∈ N. The following is true for all integers k ≥ 0.

k∑
i=0

(
m+ i

m

)
=

(
m+ k + 1

m+ 1

)
.

Proof. We have
(
m+0
m

)
= 1 =

(
m+0+1
m+1

)
, so the formula is true for k = 0.

Suppose the formula is true for some k. Recall the following recursive formula

for binomial coefficients, derived from Pascal’s Triangle:(
m

k

)
=

(
m− 1

k

)
+

(
m− 1

k − 1

)
. (6.3)
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Then

k+1∑
i=0

(
m+ i

m

)
=

k∑
i=0

(
m+ i

m

)
+

(
m+ k + 1

m

)
=

(
m+ k + 1

m+ 1

)
+

(
m+ k + 1

m

)
by inductive hypothesis

=

(
m+ (k + 1) + 1

m+ 1

)
, by (6.3)

showing the formula to be true for k+1 as well. By induction, the result holds

for all k ≥ 0.

The following lemma provides a lower bound on the size of G.

Lemma 6.13. |G| ≥
(
t+`
t−1

)
.

Proof. Since h(X) is an irreducible factor of the cyclotomic polynomial Φr(X),

its roots are primitive rth roots of unity (see Definition 2.29). Suppose ω is one

such root. Then ω is a primitive root in some extension field Fp(ω), which is

isomorphic to Fp[X]/h(X) = F by Theorem 2.27. The standard isomorphism

maps ω to X, so X is a primitive rth root of unity in F .

We will first show that any two distinct polynomials of degree less than t in

the set P = {
∏`

a=0(X + a)ea | ea ≥ 0} map to different elements in G.

Let f(X) and g(X) be two distinct polynomials of degree less than t in P .

Suppose toward a contradiction that f(X) = g(X) in the field F (recall that G

is a subgroup of F ). This is equivalent to saying f(X) ≡ g(X) (mod h(X), p).

Let m ∈ I. We then have [f(X)]m = [g(X)]m in F . Since m is introspective

for both f and g, we have

f(Xm) ≡ g(Xm) (mod Xr − 1, p)

f(Xm) ≡ g(Xm) (mod h(X), p) since h(X) divides Xr − 1,

implying that f(Xm) = g(Xm) in F . It follows that Xm is a root of the

polynomial Q(Y ) = f(Y )− g(Y ) for every m ∈ Ir (recall that Ir is the set of
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residues in I modulo r).

Since gcd(m, r) = 1 (Ir is a subgroup of Ur) and X is a primitive rth root

of unity in F , the order of Xm is r/ gcd(m, r) = r showing that Xm is also a

primitive rth root of unity in F .

It follows that each Xm is distinct and since there are |Ir| = t choices of m,

there are t distinct roots of Q(Y ) in F . However, the degree of Q(Y ) is less

than t since f and g were chosen to have degree less than t.

Since the number of roots must be less than or equal to the degree, this is

a contradiction and therefore f(X) 6= g(X) in F . Hence, any two distinct

polynomials of degree less than t in the set P map to different elements in G.

Since ordr(n) > log2 n, it follows that r > log2 n. We then have

` = b
√
φ(r) log nc <

√
r log n < r < p,

hence i 6= j in Fp for 1 ≤ i 6= j ≤ `. Therefore the elements X, X + 1, X +

2, . . . , X + ` are all distinct in F .

Additionally, since the degree of h is greater than one, X + a 6= 0 in F for

every a, 0 ≤ a ≤ `. Therefore there exist at least `+ 1 distinct polynomials of

degree one in G: namely X, X + 1, X + 2, . . . , X + `.

We seek to find how many distinct polynomials of degree less than t are

contained in G. This is equal to the sum

t−1∑
k=0

(# of distinct polynomials of degree k in G) .

In order to find the number of distinct polynomials of degree k, we look at

the number of ways we can multiply k of the above factors of degree one (the

generators of G). This can be visualized in the following way,

$ $ $ · · · $ $︸ ︷︷ ︸
` $ signs inserted between k spaces
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where X terms go in the space(s) before the first $ sign, X+ 1 terms go in the

space(s) between the first and second $ signs, and so on, up to X + ` terms

going in the space(s) after the `th $ sign. In the above example, there would

be one X term, no X + 1 terms, three X + 2 terms, two X + `− 1 terms, and

one X + ` term (with other terms in the middle).

All together there are k + ` places where we can insert ` $ signs. Hence,

there are
(
k+`
`

)
distinct ways of multiplying k factors.

Therefore (using Lemma 6.12), the total number of distinct polynomials of

degree less than t in G is greater than or equal to

t−1∑
k=0

(
k + `

`

)
=

(
t− 1 + `+ 1

`+ 1

)
=

(
t+ `

`+ 1

)
=

(
t+ `

t+ `− (`+ 1)

)
=

(
t+ `

t− 1

)
.

Since any two polynomials of degree less than t are distinct in G, it follows

that |G| ≥
(
t+`
t−1

)
.

Recall that p is a prime divisor of n. In the case that n is not a power of

p, i.e. n 6= pk for any k ≥ 1, the size of G can also be bounded above by the

following lemma.

Lemma 6.14. If n is not a power of p, then |G| ≤ n
√
t.

Proof. Recall that t is the size of the group Ir, the set of numbers in I modulo

r. Consider the following subset of I:

Î =

{(
n

p

)i
· pj

∣∣ 0 ≤ i, j ≤ b
√
tc

}
,

where the exponents i and j are now only allowed to run over the integers less

or equal to b
√
tc.

If n is not a power of p, then none of the powers
(
n
p

)i
and pj overlap. Since

there are b
√
tc + 1 choices of i and b

√
tc + 1 choices of j, it follows that the

set Î has (b
√
tc+ 1)2 > t distinct elements.

43



Since |Ir| = t, at least two numbers in Î must be equivalent modulo r. Let

m1 and m2 be two such numbers with m1 > m2. We then have

Xm1 ≡ Xm2 (mod Xr − 1).

Let f(X) ∈ P . Since m1 and m2 are both in I, they are introspective for

any polynomial in P . This gives

[f(X)]m1 ≡ f(Xm1) (mod Xr − 1, p)

≡ f(Xm2) (mod Xr − 1, p)

≡ [f(X)]m2 (mod Xr − 1, p).

Since h(X) divides Xr − 1, this implies that

[f(X)]m1 ≡ [f(X)]m2 (mod h(X), p),

so [f(X)]m1 = [f(X)]m2 in the field F = Fp[X]/h(X).

Let g(X) ∈ G. Since G ⊆ F and G ⊆ P , the above equalities still hold and

we have that g(X) is a root of the polynomial Q′(Y ) = Y m1 − Y m2 .

Since g(X) was an arbitrary element in G (which are all distinct in F ), the

polynomial Q′(Y ) has at least |G| distinct roots in F .

The degree of Q′(Y ) is m1 ≤ (n
p
· p)b

√
tc ≤ n

√
t. Since the number of roots of

any polynomial is less than or equal to the degree, |G| ≤ n
√
t.

With these bounds on |G|, we are ready to prove Proposition 6.5. One final

fact about binomial coefficients is required.

Lemma 6.15. Let m > 1. Then
(
2m+1
m

)
> 2m+1.

44



Proof. Observe that(
2m+ 1

m

)
=

(2m+ 1)!

m!(m+ 1)!

=

(
2m+ 1

m+ 1

)(
2m

m

)
· · ·
(
m+ 2

2

)(
m+ 1

1

)
= (2m+ 1) ·

(
2m

m

)(
2m− 1

m− 1

)
· · ·
(
m+ 2

2

)
> 22 · (2)(2) · · · (2)︸ ︷︷ ︸

m−1 terms

when m > 1

= 2m+1.

Proposition 6.5 (Restated). If the algorithm returns PRIME in line 7,

then n is prime.

Proof. By Lemma 6.13, for t = |Ir| and ` = b
√
φ(r) log nc we have:

|G| ≥
(
t+ `

t− 1

)
≥
(
`+ 1 + b

√
t log nc

b
√
t log nc

)
(since t >

√
t log n)3

≥
(

2b
√
t log nc+ 1

b
√
t log nc

)
(since ` = b

√
φ(r) log nc ≥ b

√
t log nc)4

> 2b
√
t lognc+1 (since b

√
t log nc > blog2 nc ≥ 1, Lemma 6.15)

≥ n
√
t.

By Lemma 6.14, |G| ≤ n
√
t if n is not a power of p. Since the above in-

equalities show |G| > n
√
t, it follows that n = pk for some k ≥ 1. However,

3t > log2 n =⇒
√
t > log n =⇒ t >

√
t log n

4n and p generate Ir and are relatively prime to r, so every element of Ir is relatively
prime to r, hence t ≤ φ(r).
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if k ≥ 2 the algorithm would have returned COMPOSITE in line 1, via the

perfect power test.

Therefore k = 1 and n = p, showing n is prime.

From Propositions 6.3, 6.4, and 6.5, the main theorem of correctness follows.

6.4 Time Complexity

We will use the fact that the basic operations of addition, multiplication, and

division of two ||n|| bit numbers can be carried out in O∼(||n||) time using

sophisticated methods [3]. The reader is encouraged to consult Chapter 3 for

descriptions of the algorithms used for other number theory computations.

By [3], the multiplication of two polynomials of degree less than or equal to

r takes O∼(r) integer multiplications using sophisticated methods.

Notation

As before, let ||n|| = blog2(n)c + 1 be the number of bits in the binary

representation of n.

Use log to denote the base 2 logarithm.

Line 1: We use the Perfect Power test (Algorithm 3.3), which takes

O∼(||n||3) time.

Line 2: To find the appropriate r, we start at r = 2 and check if nk 6≡ 1

(mod r) for every k ≤ log2 n. If it becomes equivalent to 1 we know the order

is too small, so we increment r by 1 and start over. For a given r, it therefore

takes at most O(log2 n) multiplications modulo r, which is O∼(log2 n log r). By

Lemma 6.7, the maximum number of r’s we need to try is O(log5 n), meaning

the total time complexity of Line 2 is O∼(log7 n) = O∼(||n||7).

Line 3: In this step, we compute the GCD of r numbers. Using the Eu-

clidean Algorithm, each calculation is O(||n||2), hence the time complexity of

the step is O(r · ||n||2) = O(||n||7).
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Line 4: The simple check of n ≤ r is O(||n||).

Lines 5 and 6: In this step, we verify b
√
φ(r) log nc equations. Each equa-

tion involves computing (X + a)n (mod Xr− 1) in Zn[X] and comparing it to

the polynomial Xn mod r +a. We use a variant of the Fast Powering algorithm

(Algorithm 3.2) for polynomials: squaring, multiplying, and reducing modulo

n and Xr − 1 each time.

Note that reduction modulo Xr−1 is trivial, simply replacing Xs with Xs−r

whenever an exponent s, r ≤ s ≤ 2r−1 appears. Using the square and multiply

method, each equation thus requires O(log n) multiplications of polynomials

of degree ≤ r. Each such multiplication takes O∼(r) integer multiplications

modulo n. Since the size of the coefficients in bits is O(log n), each equation

can be verified in O∼(r log2 n) steps. Therefore the total complexity of lines 5

and 6 is O∼(r
√
φ(r) log3 n) = O∼(r3/2 log3 n) = O∼(log21/2 n) = O∼(||n||10.5).

Since lines 5 and 6 have the greatest time complexity, they asymptotically

dominate the other steps, making the overall time complexity of the algorithm

O∼(log21/2 n) = O∼(||n||10.5). As advertised, this shows the algorithm to be

polynomial time in the number of the bits of the input.

6.5 Theory vs. Practicality

The AKS test was a major theoretical breakthrough in the field of primality

testing. It was the first algorithm of its kind to be deterministic, general,

unconditional, and polynomial time.

However, it is important to note that “polynomial time” does not equate

with being fast in practice. In reality, AKS is still far too slow to be of use in

testing the large numbers needed for cryptographic systems. Additionally, it

does not require many runs of a probabilistic test such as Miller-Rabin before

the difference between that and a deterministic test is completely negligible

(see remark at the end of section 5.2.2).
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Instead, the AKS algorithm should be admired for what it is: a clever,

surprisingly elegant approach to a problem that proved what people did not

know to be possible, that PRIMES is in P. It also serves as a beacon of hope to

mathematicians and computer scientists alike that other seemingly intractable

problems may one day be solved.
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